0、引言 对于立磨来说,磨辊是立磨的心脏,而磨辊轴承则是磨辊的心脏,磨辊轴承的正常工作是立磨可靠运行的关键。磨辊轴承是在高温、冲击、重载、低速的复杂环境下运行的,磨辊外部还有高粉尘等更加恶劣的工况,如何在这种工况正确使用好磨辊轴承、延长其使用寿命一直是用户及设计者所关注的问题。因此分析轴承在使用过程中的失效形式及如何避免显得尤为重要。 1、磨辊轴承的失效形式及原因 1.1 接触疲劳失效 轴承工作表面受到交变应力的作用而导致失效。 主要发生在轴承工作表面,往往伴随着疲劳裂纹,这种失效形式先从接触表面以下大交变切应力处产生,然后扩展到表面形成不同的剥落形状。它的形成过程及后果是:点蚀―麻点剥落―浅层剥落―深层剥落。 1.2 磨损失效 轴承磨损失效是指表面之间的相对滑动摩擦导致其工作表面金属不断磨损而产生的失效。磨损失效按磨损形式通常可分为磨粒磨损和粘着磨损。磨粒磨损指轴承工作表面之间挤入外来坚硬粒子或硬质异物或金属表面的磨屑且接触表面相对滑动而引起的磨损。粘着磨损指由于摩擦表面的显微凸起或异物使摩擦面受力不均,在润滑条件严重恶化时,因局部摩擦生热,易造成摩擦面局部变形和摩擦显微焊合现象,严重时表面金属可能局部熔化,接触面上作用力将局部摩擦焊接点从基体上撕裂而变大塑性变形。 磨损失效发生时,首先在轴承的表面有持续的磨损,导致轴承零件逐渐损坏,进一步造成轴承尺寸精度丧失及其它相关问题。 它的形成过程及后果是:磨损―形状变化―配合间隙变大及工作表面形貌变化―润滑剂污染―润滑功能完全丧失―轴承丧失旋转精度乃至不能正常运转。 1.3 断裂失效 这种失效主要由两大因素造成:过载和缺陷。当载荷超过强度**限时会发生过载断裂。轴承零件的微裂纹、缩孔、气泡、大块外来杂物、过热组织及局部烧伤等缺陷在冲击过载或剧烈振动时也会在缺陷处引起断裂。 1.4 轴承游隙变化失效 这种失效往往是由内、外在因素共同作用造成的,这种失效发生时,首先是配合间隙改变,进而造成轴承精度降低,以致造成“咬死”现象。外在因素主要指过盈量过大、安装不到位、温升引起膨胀量、 瞬时过载等;内在因素主要有残余奥氏体和残余应力处于不稳定状态等。 2、磨辊轴承寿命的影响因素 影响磨辊轴承寿命的因素主要有以下几个方面:轴承本身情况、轴承使用情况、磨机的运行情况、轴承的存储等等。 2.1 轴承本身情况 轴承的材料、热处理工艺,以及其强度和耐磨性、表面结构、内部几何构造等都会影响到轴承的使用寿命。对于使用者和设计者来说,应该了解轴承的工况及载荷状态,在选用轴承时提供相关参数及工况,轴承的具体问题可由轴承厂家考虑。 2.2 轴承使用方面 轴承使用方面是用户能主观控制的方面,也是影响轴承寿命的关键,从安装到具体操作以及维护保养的各个环节,都渗透着影响轴承寿命的因素。 安装方面:磨辊轴承的安装质量是影响其使用寿命的重要因素,很多磨辊轴承提前失效或损坏都与装配不当有关。用户在更换磨辊轴承时严格按说明书的要求进行, 装得过松或过紧都将造成磨辊轴承的提前损坏。 在具体安装过程中首先要避免锤击。轴承安装要进行加热,加热时注意加热位置及温度的控制,要求油在冷态时同轴承一起加热,温度控制在100~110℃; 安装完轴承后,要用煤油清洗;整个磨辊装配后进行打压试验,试验压力为0.05MPa,保压30分钟。 使用方面:主要包括密封、润滑及监测。 密封对轴承的工作寿命也有很大的影响。密封的作用是防止润滑油从轴承向外泄漏,同时防止外界粉尘物进入轴承。在高粉尘的工作环境中,若大量微小硬质颗粒进入立磨磨辊轴承内部,将恶化轴承工作环境,降低润滑效果,甚至在滚道面形成压痕,引起点蚀甚至滚道面剥落,降低轴承的工作寿命。因此,选择高可靠性的密封部件,对提高轴承工作寿命至关重要。 在高温、冲击、重载、低速的应用环境中,轴承的良好润滑条件很难形成,恶劣的粉尘环境及冲击更加恶化了润滑状况。实际应用结果表明,大多数的磨辊轴承损坏都是轴承润滑不当的结果。 监测保护方面:密封压力和轴承温度要实时监测,控制逻辑及联锁不能随便摘除,发现密封压力及轴承温度不正常时,要及时停磨,以防造成磨辊轴承的损坏。 2.3 磨机运行情况 磨机的振动会影响轴承的使用寿命,因此在磨机运行中减小振动,特别是水平振动,可为磨辊轴承的良好运行提供可靠地保障。MLS立磨的加载方式为压力框架集中加载,随着磨盘的转动,在压力框架处会产生一个水平的切向附加力,因此对于大型立磨,该处都加有缓冲装置,缓冲装置的有效工作是减小水平振动的关键。 2.4 轴承的储存 轴承的不正确储存也是影响其寿命的一个因素,如果轴承没有水平放置,会影响其游隙精度;如果包装不严密,遇到潮湿空气会造成轴承工作表面锈蚀,进而产生微小麻坑,在运行时会产生应力集中点,进而造成失效,影响寿命。 3、 结语 作为磨辊的核心部件,避免磨辊轴承的失效、保证磨辊轴承的使用寿命,是磨机有效运行的关键。从磨辊轴承的选择、安装、使用、维护等各个环节,都隐藏着影响轴承寿命的因素,用户一定要做好各环节的工作,才能保证磨辊轴承乃至整个生产线的正常运行。
导读:立磨主要是用来超细粉的一种设备,该设备生产后的物料的粒度大小是用户比较关心的一个问题,那么立磨如何保证生产成品物料的细度呐?今天就来探讨一下这个问题。立磨在生产线中对物料进行加工的时候采用的是料层磨粉原理,这种加工方式可以确保生产的成品物料粒形良好,立式磨粉机设备主要是用来生产市场需求的物料的,所以生产后的物料的细度比较重要,一般来说被粉碎后的物料被进风口的循环气流带入选粉机进行细度分级,这个过程是保证高质量超细粉生产的关键。从这一点描述中就可以看出立磨设备的风量和风速对于生产后的成品的粒度大小有着至关重要的作用。严格说来立式磨粉设备在对物料生产的过程中粉碎后的物料一般是在定量系统风速的带动下,粒度符合要求的物料随气流进入收集器成为成品矿粉,粒度大小不符合要求的物料则会受重力作用重新落入立磨的研磨室接受二次选粉,进而确保生产的成品粒度均匀。所以立磨风速和风量的调整是决定合格物料出产率的一个关键因素,这一点在生产的过程中是厂家比较重视的一个问题,在磨粉生产线重立磨系统的风量的调节一般是通过两种方式,一方面是通过控制物料颗粒大小,另一方面是对循环气流的风速和料层的厚度进行调节。立磨内部的循环气流风量与出料口的风速的操作原则并不一样,在生产的时候为了提高生产效率一般将排料口管道的风速控制在20m/s以上。除了以上所提到的风速以外影响成品料细度的因素还有很多,就目前我国磨粉行业的状况来看立磨对生料的超细磨粉工艺是目前国内的物料加工方案,该设备在生产线的应用可以使得生产过程中排渣量少、能耗低、合格率高,大大的提高生产效益。
煤磨机磨头负压是反应整个磨头部分风和煤粉混合物的流动速度,速度越大负压越大,相反则反之,负压过高主要有以下原因: 1、工艺管道布置存在问题; 2、工艺风机选型存在问题,进风和出风不匹配; 3、磨内通风存在问题,通风不畅导致磨头负压过高; 4、工艺管道内存在积料导致管道通风截面缩小引起负压升高; 5、操作问题,磨内物料太多,通风不畅;检查以上有可能引起负压升高的因素,针对每个不同原因找出相应的解决办法。
一, 近来和别的立磨操作员交流时,发现都有立磨在平稳运转时突然振动停磨现象。对当时设备进行检查,并没有问题,而当时系统参数也无大的变化。停磨后,发现磨盘上有一层较厚的粉料,那么为什么会有一层较厚的粉料,而磨又为什么突然震停呢? 二, 振磨原因分析虽然入磨物料粒度越小产量就越高,但对于立磨来说,要稳定运行还在磨辊和磨盘之间形成一定厚度的料层,以避免俩者接触而产生磨损和振动。当入磨的粉料达到一定的比例时,由于粉料的流动性比块状料大的多,所以经过磨辊挤压形成的料层较薄,这样就**易产生振动。另外,外溢的粉料被喷口环的高速风带起,经选粉后,只有小部分合格的细粉被选出,其余在磨内循环,这样就使磨内循环粉料量加大,而且细粉颗粒之间又有相互吸附的趋势,当循环量达到一定程度时,表现为入口负压降低,出口负压增高,磨内循环在逐步恶化,进出口压差在增加,这时风量不足以浮起越聚越多的粉料时,就会突然大量落至磨盘上,造成料层细粉增多,辊子咬不住料层,磨辊产生滑移现象,压迫料层,从而会剧烈振动导致停磨。而跳停前料层厚度无明显变化,是因大量粉料在磨内处于悬浮循环状态,而在跳磨前看似平稳运行,到磨跳停总共不到1分钟时间,连调整的早间都没有。而跳磨瞬间料层急剧变薄,是因为塌料后磨盘上粉料过多,磨辊无法咬住物料产生滑移压破料层,而实际磨内物料已相当多,这与打开磨实际检查相符,若这时用辅传转动磨就会发现料层较正常运行时厚许多.。三, 如何提前预防判断 1. 料层虽无明显变化,但磨入口负压有降低趋势,磨机进出口压差在增加,振动值也略有增加。还有就是在别的条件未变化情况下(比如立磨所有风门和增湿塔出口温度,和入磨物料未变化的情况下)磨出口温度在逐渐降低,说明磨内悬浮料在增加,如不及时加以调整,悬浮料会越聚越多,必然会造成塌料停磨。这时可适当 降低分离器转速,及时释放部分悬浮粉料,并适当减产,待控制的各参数恢复正常后,方可恢复正常操作。 2. 当物料发生变化时(比如现在提倡循环经济,废渣利用,不少厂家用各种工业废渣,硅石,黄沙,砂岩,硫铁渣等来代替粘土),这些物料比起标准的三组分石灰石,黏土,铁质校正料相比,易磨性差,在磨里不易磨成成品,等磨到一定程度时,这些物料始终在磨内处于循环悬浮状态,落不到磨床上而继续被粉磨,也未达到成品细度而无法出磨,会越聚越多到磨内风不足以托浮起时就会集中落下,在这种情况下,要改变以往的一些控制方法和参数,具体方法:适当降低入磨负压,目的是使未达到成品细度而出不了磨的悬浮料能够重新落回到磨盘上粉磨,适当降低料层厚度,提高研磨效率,研磨压力不应降低,这样有利于把这些易磨性差的物料,迅速磨成合格细粉而抽出磨外。 3. 为了提高立磨产量,可适当掺入一定量的粉状料,但一定要掺合均匀,不致于造成粉料集中进磨,使磨振动跳停。并且只能掺入适当比例,应和块状料有一定粒度级配。而不是越多越好。总之,立磨入磨粉料比例过多,可造成磨机突然振动停机。在操作过程中当参数发生变化时,要及时判断并加以调整,避免造成频繁跳停,不仅对设备造成了损害,而且频繁启动还增加了电耗。
SHM立磨是利用料床粉碎原理进行粉磨物料的一种研磨机械。现已被广泛应用于水泥、煤炭、电力等行业。SHM立磨是一种全风扫式磨机,入磨物料经过挤压,在离心力的作用下甩下盘边沉落到喷口环处,靠该处的高速风将其吹起、吹散,金属、重矿石将沉降到喷口环下排出。细粉带到立磨上部,经分离器分选,成品随同气体进入收尘器收集起来,粗粉又循环回来。粗粉、粗颗粒被抛起,随着风速的降低,使其失去依托,沉降到盘面上,靠离心力进入压磨轨道进行新一轮的循环。在多次循环中,颗粒与气体之间传热使水分蒸发。因此,SHM立磨集物料的粉磨、输送、选粉、烘干以及分离金属块和重矿石等诸多优点于一身。正常条件下,只要通过短期的工艺调试,立磨都能平稳运转。但是,如何优化工艺参数保证质量、确保、提高产量、降低能耗、提高运转率、不断提高经济效益是立磨的管理和操作的中心问题。下面针对这些问题,进行简要的探讨。1、磨内通风及进出口温度控制 1.1、入磨风的来源及匹配 入磨热风大多采用回转窑系统的废气,也有的工艺系统采用热风炉提供热风,为了调节风温和节约能源,在入磨前还可兑入冷风和循环风。 采用热风炉供给热风的工艺系统,为了节约能源,视物料含水情况可兑入20%~50%的循环风。而采用预分解窑废气作热风源的系统,希望废气能全部入磨利用。若有余量则可通过管道将废气直接排入收尘器。如果废气全部入磨仍不够,可根据入磨废气的温度情况,确定兑入部分冷风或循环风。1.2、风量、风速及风温的控制(1)风量的选定原则出磨气体中含尘(成品)浓度应在550~750g/m3之间,一般应低于700g/m3;出磨管道风速一般要>20m/s,并避免水平布置;喷口环处的风速标准为60m/s,大波动范围为70%~105%; 当物料易磨性不好,磨机产量低,往往需选用大一个型号的立磨。相比条件下,在出口风量合适时,喷口环风速较低,应按需要用铁板挡上磨辊后喷口环的孔,减少通风面积,增加风速。挡多少个孔,要通过风平衡计算确定;允许按立磨的具体情况在70%~105%范围内调整风量,但窑磨串联的系统应不影响窑的烟气排放。(2)风温的控制原则 生料磨出磨风温不允许超过100℃。否则软连接要受损失,旋风筒分格轮可能膨胀卡停;煤磨出磨风温视煤质情况而定,挥发分高的,则出磨风温要低些,反之可以高些。一般应控制在90℃以下,以免系统燃烧、爆炸等现象的发生。在用热风炉供热风的系统,只要出磨物料的水分满足要求,入收尘器风温高于16℃以上,可以适当降低入、出口风温,以节约能源。 烘磨时入口风温不能超过200℃,以免使磨辊内润滑油变质。1.3、防止系统漏风 系统漏风是指立磨本体及出磨管道、收尘器等处的漏风。在总风量不变的情况下,系统漏风会使喷口环处的风速降低,造成吐渣严重。由于出口风速的降低,使成品的排出量少,循环负荷增加,压差升高。由于恶性循环,总风量减少,易造成饱磨,振动停车。还会使磨内输送能力不足而降低产量。另外,还可降低入收尘器的风温,易出现结露。如果为了保持喷口环处的风速,而增加通风量,这将会加重风机和收尘的负荷,浪费能源。同时也受风机能力和收尘器能力。因此系统漏风百害而无一利,是在克服之列SHM立磨要求系统漏风<4%,根据我们的国情,应按漏风<15%作风路设计,因此系统漏风量一定不能>15%。2、几种参数的选择 2.1、关于拉紧力的选择 立磨的研磨力主要来源于液压拉紧装置。通常状况下,拉紧压力的选用和物料特性及磨盘料层厚度有关,因为立磨是料床粉碎,挤压力通过颗粒间互相传递,当超过物料的强度时被挤压破碎,挤压力越大,破碎程度越高,因此,越坚硬的物料所需拉紧力越高;同理,料层越厚所需的拉紧力也越大。否则,效果不好。对于易碎性好的物料,拉紧力过大是一种浪费,在料层薄的情况下,还往往造成振动,而易碎性差的物料,所需拉紧力大,料层偏薄会取得更好的粉碎效果。拉紧力选择的另一个重要依据为磨机主电机电流。正常工况下不允许超过额定电流,否则应调低拉紧力。2.2 关于分离器转速的选择影响产品细度的主要因素是分离器的转速和该处的风速。在分离器转速不变时,风速越大,产品细度越粗,而风速不变时,分离器转速越快,产品颗粒在该处获得的离心力越大,能通过的颗粒直径越小,产品细度越细。通常状况下,出磨风量是稳定的,该处的风速也变化不大。因此控制分离器转速是控制产品细度的主要手段。立磨产品粒度是较均齐的,应控制合理的范围,一般0.08mm筛筛余控制在12%左右可满足回转窑对生料、煤粉细度的要求,过细不仅降低了产量,浪费了能源,而且提高了磨内的循环负荷,造成压差不好控制。 3楼 正常工况磨床压差应是稳定的,这标志着入磨物料量和出磨物料量达到了动态平衡,循环负荷稳定。一旦这个平衡被破坏,循环负荷发生变化,压差将随之变化。如果压差的变化不能及时有效地控制,必然会给运行过程带来不良后果,主要有以下几种情况:(1)压差降低表明入磨物料量少于出磨物料量,循环负荷降低,料床厚度逐渐变薄,薄到**限时会发生振动而停磨。(2)压差不断增高表明入磨物料量大于出磨物料量,循环负荷不断增加,终会导致料床不稳定或吐渣严重,造成饱磨而振动停车。 压差增高的原因是入磨物料量大于出磨物料量,一般不是因为无节制的加料而造成的,而是因为各个工艺环节不合理,造成出磨物料量减少。出磨物料应是细度合格的产品。如果料床粉碎效果差,必然会造成出磨物料量减少,循环量增多;如果粉碎效果很好,但选粉效率低,也同样会造成出磨物料减少。影响粉碎效果的因素有以下几项:(1)液压拉紧装置的拉紧力 在其它因素不变的情况下,液压拉紧装置的拉紧力越大,作用于料床上物料的正压力越大,粉碎效果就越好。但拉紧力过高会增加引起振动的几率,电机电流也会相应增加。因此操作人员要根据物料的易磨性、产量和细度指标,以及料床形成情况和控制厚度及振动情况等统筹考虑拉紧力的设定值。(2)料床厚度 在拉紧力已定的前提下,不同的料床厚度,承受这已定的压力效果也就不同。尤其是易碎性不同的物料,其要求的破坏应力不一样,因此料床厚度的佳值也不一样。(3)磨盘和磨辊的挤压工作面 在生产过程中,伴随着磨盘、磨辊的磨损,粉碎效果会下降,由于种种原因造成盘与辊之间的挤压工作面凸凹不平时,将会出现局部过粉碎、局部挤压力不够的现象,造成粉碎效果差。因此磨盘和磨辊衬板时好一起更换,否则会降低粉碎效果。(4)物料的易碎性 物料的易碎性对于粉碎效果影响很大,立磨选型设计都是根据所用原料的试验数据和产量要求而确定规格型号。在这里值得注意的是:同一台磨使用于不同矿山、不同易碎性的原料时,要注意及时调节有关参数以免造成压差变动。分离效果是影响循环负荷的主要因素之一。它是指把已符合细度要求的物料,及时地分离排出磨外这项工作完成的情况。分离效果取决于由分离器转速和磨内风速所构成的流体流场。通常状况下,分离器转速提高,出磨产品变细,而在分离器转速已定的情况下。磨内风速提高,出磨产品变粗。一般这两项参数是稳定平衡的。4、立磨的主要经济技术指标及影响因素 立磨的主要经济技术指标有产量、电耗、化学成分合格率、产品细度、水分等。(1)影响产品细度的主要因素就是分离器转速和该处风速,一般风速不能任意调整,因此调整分离器转速为产品细度控制的主要手段,分离器是变频无级调速,转速越高,产品细度越细。立磨的产品细度是很均齐的,但不能过细,应控制在要求范围内,理想的细度应为9%~12%(0.08mm筛)。产品太细,既不易操作又造成浪费。(2)影响产品水分的因素一个是入磨风温,一个是风量。风量基本恒定,不应随意变化。因此入磨风温就决定了物料出磨水分。在北方,为防均化库在冬季出现问题,一般出磨物料水分应在0.5%以下,不应超过0.7%。(3)影响磨机产量的因素除物料本身的性能外,主要是拉紧压力、料层厚度的合理配合。拉紧压力越高,研磨能力越大,料层越薄,粉磨效果越好。但要在平稳运行的前提下追求产量,否则事与愿违。当然磨内的通风量应满足要求。(4)产品的电耗是和磨机产量紧密相关的。产量越高,单位电耗越低。另外与合理用风有关,产量较低,用风量很大,势必增加风机的耗电量,因此通风量要合理调节,在满足喷口环风速和出磨风量含尘浓度的前提下,不应使用过大的风量。
中速磨粉机工作原理:通过减速机带动主轴及各层转盘旋转,转盘通过柱销带动几十个环辊在磨环滚道内滚动并旋转。物料在离心力的作用下散向圆周边,并落入磨环的滚道内被环辊冲压、滚碾、研磨而粉碎,然后进入选粉机内旋转的蜗轮所产生的蜗流使粗颗粒物料回落重磨,细粉则随气流进入旋风集粉器并由其下部的卸料阀排出即为成品,而带有少量细粉尘的气流则经过脉冲除尘器净化后通过风机及消声器排出。 立式辊磨煤机的工作原理:电动机通过减速机带动磨盘转动,物料从进料口落在磨盘,同时热风从进风口进入磨内,在离心力作用下,物料向磨盘边缘移动,经过磨盘上的环行槽时受到磨辊的加压碾压而粉碎,粉碎后的物料在磨盘边缘被风环处高速气流带起,大颗粒直接落到磨盘上重新粉磨,气流中的物料经过分离器时,在旋转转子的作用下,粗粉落在磨盘上重新粉磨,合格细粉随气流一起出磨,在收尘器中收集,即为成品。